سودمندی رگرسیون های تجمیعی و روش های انتخاب متغیرهای پیش بین بهینه در پیش بینی بازده سهام

Authors

محمد حسین ستایش

استاد حسابداری، دانشگاه شیراز، شیراز، ایران مصطفی کاظم نژاد

دانشجوی دکتری حسابداری، دانشگاه شیراز، شیراز، ایران

abstract

مقاله حاضر به بررسی سودمندی رگرسیون های تجمیعی و روش های انتخاب متغیرهای پیش بین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیش بینی بازده سهام شرکت های پذیرفته شده در بورس اوراق بهادار تهران می پردازد. به منظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیش بینی این روش، با رگرسیون خطی و شبکه های عصبی مصنوعی مقایسه شده است. همچنین به منظور ارزیابی عملکرد روش های انتخاب متغیرهای بهینه پیش بین، معیارهای ارزیابی حاصل از پیش بینی با استفاده از متغیرهای انتخاب شده توسط این روش ها با معیارهای حاصل از پیش بینی با استفاده از کلیه متغیرها مقایسه شده است. یافته های تجربی مربوط به بررسی 101 شرکت پذیرفته شده در بورس اوراق بهادار تهران در سال های 1383 الی 1392 حاکی از عملکرد بهتر روش تجمیعی نسبت به رگرسیون خطی و شبکه های عصبی مصنوعی است. افزون بر این، یافته ها حاکی از آن بود که پیش بینی با استفاده از متغیرهای انتخاب شده در روش های مبتنی بر همبستگی و ریلیف، به طور معناداری عملکرد پیش بینی را نسبت به استفاده از کلیه متغیرها افزایش می دهد. abstract present study investigates the usefulness of ensemble regression and feature selection methods (including correlation-based feature selection and relief) in predicting stock returns of companies listed on tehran stock exchange. for performance evaluation of ensemble regression, evaluation criteria (including mean absolute percentage error, root mean squared error and coefficient of determination) of this method compared with linear regression and artificial neural networks. also, for performance evaluation of feature selection methods, evaluation criteria of these methods compared with using all variables. the experimental results of investigating 101 companies listed in tehran stock exchange in 2004-2013 indicate that ensemble regression outperforms the linear regression and artificial neural networks. furthermore, the results show that selected variables with correlation-based feature selection and relief result in better prediction in compare with using all variables.   keywords: stock returns prediction, ensemble regression, feature selection methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه در پیش‌بینی بازده سهام

مقاله حاضر به بررسی سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیش‌بینی بازده سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران می‌پردازد. به‌منظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیش‌بینی این روش، با رگرسیون خطی و شبکه‌های عصبی مصنوعی...

full text

بررسی سودمندی روش های کاهش متغیرها در پیش بینی بازده سهام شرکت های پذیرفته شده در بورس اوراق بهادار تهران

هدف این پژوهش، بررسی سودمندی روش های مختلف کاهش )انتخاب و استخراج( متغیرها در پیش بینیبازده سهام شرکت های پذیرفته شده در بورس اوراق بهادار تهران است. در این راستا، با بررسی پیشینهپژوهش، 52 متغیر اولیه که بیشتر در ادبیات استفاده و داده های مورد نیاز برای سنجش آنها در دسترسبود، جستجو و با استفاده از روش انتخاب متغیر ریلیف و روش استخراج متغیر تحلیل عاملی، متغیرهای بهینهاز ب...

full text

بررسی سودمندی روش غیرخطی رگرسیون بردارهای پشتیبان و روش‌های کاهش متغیرهای پیش‌بین در پیش‌بینی بازده سهام

هدف این پژوهش، بررسی سودمندی روش‌های کاهش متغیرها و روش‌‌ غیرخطی رگرسیون بردارهای پشتیبان، در پیش‌بینی بازده سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران است. با استفاده از روش‌‌های مبتنی بر همبستگی و تحلیل عاملی، متغیرهای بهینه از بین 52 متغیر اولیه، انتخاب یا استخراج شده است. در ادامه، با استفاده از روش‌های غیرخطی رگرسیون بردارهای پشتیبان و شبکه‌های عصبی مصنوعی و همچنین رگرسیون خطی، ب...

full text

پیش بینی قیمت سهام با روش رگرسیون فازی

در پیش بینی قیمت سهام، روش های گوناگونی به کار رفته است، اما هیچ کدام از آن ها نمی تواند، به تمام متغیّرهای شرکت کننده در برآورد مدل قیمت سهام و اثر هر یک از آن ها و حل خطای مدل بپردازد. اکثر حوزه های پیش بینی در روش های کلاسیکی، چون ARIMA و روش های نوینی، چون شبکه های عصبی برای قیمت سهام قرار دارند. در این پژوهش به روشی دست یافته شده که حاصل ادغام رگرسیون معمولی و رگرسیون فازی به همراه بهینه س...

full text

پیش بینی بازده سهام با استفاده از روش انقباضی LASSO

انتخاب متغیر، یکی از مراحل مهم در مدل­سازی آماری است. برای این منظور، معمولاً از روش­هایی نظیر حذف پسرو استفاده می­شود. از آنجایی که در این روش­ها دو مرحله ی برآورد مدل و انتخاب متغیر به طور جداگانه صورت می­گیرد، نتیجه­ی حاصل بی­ثبات خواهد بود. به همین دلیل اخیراً گروه دیگری از روش­های انتخاب متغیر به نام روش­های انقباضی مطرح شده­اند که در این بین، LASSO از محبوبیت ویژه­ای برخوردار است. در این تح...

full text

مقایسه روش های مختلف انتخاب متغیرهای پیش بین برای پیش بینی بحران مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران

در پژوهش­های انجام شده در زمینه پیش­ بینی بحران مالی و ورشکستگی، هدف و تأکید اصلی، ارائه مدل­های مناسب و دقیق برای پیش­ بینی ورشکستگی بوده و کمتر به انتخاب متغیرهای پیش­ بین و روش­ های مناسب آن پرداخته شده است. بنابراین، پژوهش حاضر به بررسی و مقایسه سودمندی روش­های مختلف انتخاب متغیرهای پیش­ بین درپیش­ بینی بحران مالی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران می­ پردازد. در این راستا، عمل...

full text

My Resources

Save resource for easier access later


Journal title:
پژوهش های حسابداری مالی و حسابرسی

جلد ۸، شماره ۳۲، صفحات ۱-۲۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023